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Introduction
We first consider

∂Xt(x)

∂t
=

1
2

∆Xt(x) + Xt(x)βẆt(x), t > 0, x ∈ R,

where {W(dt, dx)} is a space-time Gaussian white noise.

• (Nonnegative solution) β = 1
2 :

(1) The solution is the density of a SBM(Konno &Shiga(1988), Reimers(1989)).
(2) Pathwise uniqueness (PU): unknown.
(3) Xiong (2013): PU to SPDE for {Yt}, Yt(x) := Xt(−∞, x] :=

∫ x
−∞ Xt(y)dx.

Dawson and Li (2012): PU to similar equation.
• Negative and positive solution (with Xt(x)β replaced by |Xt(x)|β):
(1) β > 3

4 : Mytnik and Perkins (2011): PU holds
(2) β ∈ (0, 3

4): non-uniqueness holds, Burdzy et al.(2010), Mueller et al.(2014)
•Colored noise:replaced W by W̃(ds, dx) = W̃(ds, x)dx = dx

∫
y∈R ρ(y −

x)W(ds, dy)
Sturm (2003): Existence; Mytnik et al. (2006): PU holds
Rippl & Sturm (2013), Neuman (2014): Further work
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Introduction

Mytnik (2002) constructed a nonnegative weak solution (1 < α < 2, 0 < β < 1):

∂Xt(x)

∂t
=

1
2

∆Xt(x) + Xt(x)βL̇t(x), t > 0, x ∈ R, (1)

where L(ds, dx) is a one sided α-stable white noise without negative jumps.
• αβ = 1:
(1) The solution is the density of a SBM with α-stable branching.
(2) PU: holds for 1 < α <

√
5− 1 (Y.& Zhou (2017)), unknown for rest.

(3) Fixed t > 0, x 7→ Xt(x) has continuous version ([MP03]) (?)
Locally Hölder ([FMW10])(??) and Hölder continuous ([FMW11]).
It is almost sure multifractal (Mytnik and Wachtel (2015))

(4) He, Li and Y. (2014): PU to distribution-function-valued SPDE.
• αβ 6= 1: Y. & Zhou (2017): PU holds for certain α, β, (?, ??) also hold.
• Our goal: Existence and PU hold for colored noise:
replaced L by L̃(ds, dx) := L̃(ds, x)dx = dx

∫
y∈R h(y− x)L(ds, dy).
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(3) Fixed t > 0, x 7→ Xt(x) has continuous version ([MP03]) (?)
Locally Hölder ([FMW10])(??) and Hölder continuous ([FMW11]).
It is almost sure multifractal (Mytnik and Wachtel (2015))

(4) He, Li and Y. (2014): PU to distribution-function-valued SPDE.
• αβ 6= 1: Y. & Zhou (2017): PU holds for certain α, β, (?, ??) also hold.
• Our goal: Existence and PU hold for colored noise:
replaced L by L̃(ds, dx) := L̃(ds, x)dx = dx

∫
y∈R h(y− x)L(ds, dy).
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Main results

Suppose that β ≥ 1− 1/α and h ∈ Lθ(R)+ for all θ > 0.
X := {f :

∫
R |f (x)|e−|x|dx <∞}, equipped with weak convergence topology.

Theorem 1 (Existence)

If X0 ∈ X+ with
∫
R X0(x)pe−|x|dx <∞ for all p < α, then (1) has a solution:

sup
t∈[0,T]

E
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R
Xt(x)pe−|x|dx

}
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Theorem 2 (PU)
If {Xt : t ≥ 0} and {Yt : t ≥ 0} are two solutions to (1) with X0 = Y0, P-a.s.,

P
{∫

R
|Xt(x)− Yt(x)|dx = 0 for all t ≥ 0

}
= 1.

Remark: PU for SDE holds with β ≥ 1 − 1/α (Fu and Li (2010), Li and
Mytnik (2011), and Li and Pu (2012)).
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Sketch of proof for Theorem 1

By (1),

Xt(x) = X0(x) +
1
2

∫ t

0
∆Xs(x)ds +

∫ t

0

∫
R

Xs−(x)βh(y− x)L(ds, dy).

Inspired by Sturm (2003), we prove that SDE system has strong PU solution:

un
t (xn) = un

0(xn) +
1
2

∫ t

0
∆nun

s (xn)ds +

∫ t

0

∫
R

[un
s−(xn)]βhn(y, xn)L(ds, dy), (2)

where xn ∈ Z
n , In

x := (x− 1
2n , x + 1

2n ],

un
0(x) := n

∫
In
x

u0(v)dv, hn(y, x) := n
∫

In
x

h(y− v)dv

and ∆n is a discrete Laplacian operator defined by

∆nf (z) := n2[f (z + 1/n) + f (z− 1/n)− 2f (z)].
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Sketch of proof for Theorem 2

By (1),

(Xt, f ) = (X0, f ) +
1
2

∫ t

0
(Xs,∆f )ds +

∫ t

0

∫
R

[ ∫
R

Xs−(x)βh(y− x)f (x)dx
]
L(ds, dy).

• {Bt}: Brownian motion independent of {Xt : t ≥ 0}, ξr
t := Bt − Br.

• T > 0 be fixed and Xδt (x) := (Xt, pδ(x− ·)), pδ(x) := 1√
2πδ

e−x2/(2δ).

• L(ds, dy) =
∫∞

0 zÑ(ds, dz, dy). Then we have backward doubly SDE:

XδT−t(ξ
r
t + x) = XδT(ξr

T + x) +

∫ T

t
∇XδT−s(ξ

r
s + x)dBs

+

∫ T−

t−

∫ ∞
0

∫
R

[ ∫
R

pδ(ξr
s + x− v)h(y− v)XT−s(v)βdv

]
zÑ(
←−
ds, dz, dy).

• {Yt}: another solution to (1) with Y0 = X0 and independent of {Bt}.
• X̄t := XT−t − YT−t, X̄δ,rt (x) := X̄δt (ξr

t + x),
H̄δ,r

t (x, y) :=
∫
R pδ(ξr

t + x− v)h(y− v)[XT−t(v)β − YT−t(v)β]dv.
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0 zÑ(ds, dz, dy). Then we have backward doubly SDE:

XδT−t(ξ
r
t + x) = XδT(ξr

T + x) +

∫ T

t
∇XδT−s(ξ

r
s + x)dBs

+

∫ T−

t−

∫ ∞
0

∫
R

[ ∫
R

pδ(ξr
s + x− v)h(y− v)XT−s(v)βdv

]
zÑ(
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zÑ(
←−
ds, dz, dy).

• {Yt}: another solution to (1) with Y0 = X0 and independent of {Bt}.
• X̄t := XT−t − YT−t, X̄δ,rt (x) := X̄δt (ξr

t + x),
H̄δ,r

t (x, y) :=
∫
R pδ(ξr

t + x− v)h(y− v)[XT−t(v)β − YT−t(v)β]dv.
Xu Yang (NMU) Existence and pathwise uniqueness to an SPDE driven by colored α-stable noise

The 14th Workshop on Markov Processes and Related Topics 7
/ 14



Sketch of proof for Theorem 2

X̄δ,rt (x) =

∫ T

t
∇X̄δ,rs (x)dBs +

∫ T−

t−

∫ ∞
0

∫
R

Hδ,r
s (x, y)zÑ(

←−
ds, dz, dy).

• φn(x) :=
∫ |x|

0 dy
∫ y

0 ψn(z)dz with an := exp{−n(n+1)/2},
∫ an−1

an
ψn(x)dx =

1 and 0 ≤ ψn(x) ≤ 2n−1x−11(an,an−1)(x). Then φ′′n ≥ 0.
• By Itô’s formula,

φn(X̄δ,rt (x)) = −1
2

∫ T

t
φ′′n(X̄δ,rs (x))|∇X̄δ,rs (x)|2ds−

∫ T

t
φ′n(X̄δ,rs (x))∇X̄δ,rs (x)dBs

+

∫ T

t
ds

∫
R

dy
∫ ∞

0
Dn(X̄δ,rs (x), zH̄δ,r

s (x, y))π(dz)

+

∫ T−

t−

∫ ∞
0

∫
R

Dn(X̄δ,rs (x), zH̄δ,r
s+(x, y))Ñ(

←−
ds, dz, dy),

whereDn(y, z) := φn(y+z)−φn(y) and Dn(y, z) := φn(y+z)−φn(y)−zφ′n(y).
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←−
ds, dz, dy),

whereDn(y, z) := φn(y+z)−φn(y) and Dn(y, z) := φn(y+z)−φn(y)−zφ′n(y).

Xu Yang (NMU) Existence and pathwise uniqueness to an SPDE driven by colored α-stable noise
The 14th Workshop on Markov Processes and Related Topics 8

/ 14



Sketch of proof for Theorem 2

X̄δ,rt (x) =

∫ T

t
∇X̄δ,rs (x)dBs +

∫ T−

t−

∫ ∞
0

∫
R

Hδ,r
s (x, y)zÑ(
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R
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• Letting δ → 0,

E
{
φn(X̄r

t (x))
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≤ E

{∫ T

t
ds

∫
R

dy
∫ ∞

0
Dn(X̄r

s(x), zH̄r
s(x, y))π(dz)

}
,

where X̄r
t (x) := X̄t(ξ

r
t + x) and H̄r

s(x, y) := h(y− (ξr
s + x))[XT−s(ξ

r
s + x)β −

YT−s(ξ
r
s + x)β].
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Sketch of proof for Theorem 2

• Since |φ′n| ≤ 1, |Dn(y, z)| = |φn(y + z)− φn(z)− zφ′n(y)| ≤ 2|z|.
• For y(y + z) > 0, we have Dn(y, z) ≤ 2n−1z2/|y|.
• Then for θ, γ > 0, (π(dz) = cz−1−αdz),∫ ∞

0
Dn(X̄r

s(x), zH̄r
s(x, y))π(dz)

=

∫ nγ |X̄r
s (x)|θ

0
Dn(X̄r

s(x), zH̄r
s(x, y))π(dz) +

∫ ∞
nγ |X̄r

s (x)|θ
Dn(X̄r

s(x), zH̄s(x, y))π(dz)

≤ Cn−1|X̄r
s(x)|2β−1h(y− ξr

s − x)2
∫ nγ |X̄r

s (x)|θ

0
z2π(dz)

+C|Ūr
s(x)|βh(y− ξr

s − x))

∫ ∞
nγ |X̄r

s (x)|θ
zπ(dz)

= C
[
n(2−α)γ−1|X̄r

s(x)|2β−1+(2−α)θh(y− ξr
s − x)

+n(1−α)γ |X̄r
s(x)|β+(1−α)θh(y− ξr

s − x)2
]
,

which tends to zero as n→∞ if 0 < γ < 1/(2− α) and θ is chosen so that
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Sketch of proof for Theorem 2

0 ≤ 2β − 1 + (2− α)θ < α, 0 ≤ β + (1− α)θ < α.

The above inequalities are equivalent to

1− 2β
2− α

≤ θ ≤ β

α− 1
∧ α+ 1− 2β

2− α
,

which holds as long as β ≥ 1− 1/α.
• Letting n→∞,

E
{
|XT−t(ξ

r
t + x)− YT−t(ξ

r
t + x)|

}
= 0.

Taking r = t, we get E{|XT−t(x)− YT−t(x)|} = 0, which implies

P
{∫

R
|Xt(x)− Yt(x)|dx = 0 for all t ≥ 0

}
= 1.
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General result

Theorem
Suppose that
(C1): G(0) ≥ 0,H(0) = 0, and the function x 7→ H(x) is nondecreasing.
(C2):

|G(x)− G(y)| ≤ C|x− y|,
|H(x)− H(y)| ≤ C|x− y|β

for some constant 1− 1/α ≤ β < 1. Then for the following SPDE, Theorems
1 and 2 also hold:

∂Xt(x)

∂t
=

1
2

∆Xt(x) + G(Xt(x)) + H(Xt−(x)) ˙̃Lt(x), t > 0, x ∈ Rd.
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Future work

Let h(x) = pγ(x) := 1√
2πγ

e−x2/(2γ).

Could we get PU to SPDE driven by stable white noise as γ → 0?
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Thanks!

E-mail: xuyang@mail.bnu.edu.cn
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