Existence and pathwise uniqueness to an SPDE driven by colored α -stable noise

Xu Yang

(Joint work with Jie Xiong)

North Minzu University

The 14th Workshop on Markov Processes and Related Topics

- Introduction
- Main results
- Sketch of proofs
- General result
- Future work

3

◆ロト ◆聞と ◆居と ◆居と

We first consider

$$\frac{\partial X_t(x)}{\partial t} = \frac{1}{2} \Delta X_t(x) + X_t(x)^{\beta} \dot{W}_t(x), \quad t > 0, \ x \in \mathbb{R},$$

where $\{W(dt, dx)\}$ is a space-time Gaussian white noise.

• (Nonnegative solution) $\beta = \frac{1}{2}$:

The solution is the density of a SBM(Konno &Shiga(1988), Reimers(1989)).
 Pathwise uniqueness (PU): unknown.

(3) Xiong (2013): PU to SPDE for $\{Y_t\}$, $Y_t(x) := X_t(-\infty, x] := \int_{-\infty}^x X_t(y) dx$. Dawson and Li (2012): PU to similar equation.

• Negative and positive solution (with $X_t(x)^{\beta}$ replaced by $|X_t(x)|^{\beta}$): (1) $\beta > \frac{3}{4}$: Mytnik and Perkins (2011): PU holds (2) $\beta \in (0, \frac{3}{4})$: non-uniqueness holds, Burdzy *et al.*(2010), Mueller *et al.*(2014) • Colored noise:replaced W by $\tilde{W}(ds, dx) = \tilde{W}(ds, x)dx = dx \int_{y \in \mathbb{R}} \rho(y - x)W(ds, dy)$ Sturm (2003): Existence; Mytnik *et al.* (2006): PU holds Rippl & Sturm (2013), Neuman (2014): Further work

We first consider

$$rac{\partial X_t(x)}{\partial t} = rac{1}{2} \Delta X_t(x) + X_t(x)^{eta} \dot{W}_t(x), \quad t > 0, \; x \in \mathbb{R},$$

where $\{W(dt, dx)\}$ is a space-time Gaussian white noise.

• (Nonnegative solution) $\beta = \frac{1}{2}$:

The solution is the density of a SBM(Konno &Shiga(1988), Reimers(1989)).
 Pathwise uniqueness (PU): unknown.

(3) Xiong (2013): PU to SPDE for $\{Y_t\}$, $Y_t(x) := X_t(-\infty, x] := \int_{-\infty}^x X_t(y) dx$. Dawson and Li (2012): PU to similar equation.

• Negative and positive solution (with $X_t(x)^{\beta}$ replaced by $|X_t(x)|^{\beta}$): (1) $\beta > \frac{3}{4}$: Mytnik and Perkins (2011): PU holds (2) $\beta \in (0, \frac{3}{4})$: non-uniqueness holds, Burdzy *et al.*(2010), Mueller *et al.*(2014) • Colored noise:replaced W by $\tilde{W}(ds, dx) = \tilde{W}(ds, x)dx = dx \int_{y \in \mathbb{R}} \rho(y - x)W(ds, dy)$ Sturm (2003): Existence; Mytnik *et al.* (2006): PU holds Rippl & Sturm (2013), Neuman (2014): Further work

We first consider

$$rac{\partial X_t(x)}{\partial t} = rac{1}{2} \Delta X_t(x) + X_t(x)^eta \dot{W}_t(x), \quad t>0, \; x\in \mathbb{R},$$

where $\{W(dt, dx)\}$ is a space-time Gaussian white noise.

- (Nonnegative solution) $\beta = \frac{1}{2}$:
- (1) The solution is the density of a SBM(Konno &Shiga(1988), Reimers(1989)).
- (2) Pathwise uniqueness (PU): unknown.
- (3) Xiong (2013): PU to SPDE for $\{Y_t\}$, $Y_t(x) := X_t(-\infty, x] := \int_{-\infty}^x X_t(y) dx$. Dawson and Li (2012): PU to similar equation.

• Negative and positive solution (with $X_t(x)^{\beta}$ replaced by $|X_t(x)|^{\beta}$): (1) $\beta > \frac{3}{4}$: Mytnik and Perkins (2011): PU holds (2) $\beta \in (0, \frac{3}{4})$: non-uniqueness holds, Burdzy *et al.*(2010), Mueller *et al.*(2014) • Colored noise:replaced W by $\tilde{W}(ds, dx) = \tilde{W}(ds, x)dx = dx \int_{y \in \mathbb{R}} \rho(y - x)W(ds, dy)$ Sturm (2003): Existence; Mytnik *et al.* (2006): PU holds Rippl & Sturm (2013), Neuman (2014): Further work

We first consider

$$rac{\partial X_t(x)}{\partial t} = rac{1}{2} \Delta X_t(x) + X_t(x)^eta \dot{W}_t(x), \quad t>0, \; x\in \mathbb{R},$$

where $\{W(dt, dx)\}$ is a space-time Gaussian white noise.

• (Nonnegative solution) $\beta = \frac{1}{2}$:

The solution is the density of a SBM(Konno &Shiga(1988), Reimers(1989)).
 Pathwise uniqueness (PU): unknown.

(3) Xiong (2013): PU to SPDE for $\{Y_t\}$, $Y_t(x) := X_t(-\infty, x] := \int_{-\infty}^x X_t(y) dx$. Dawson and Li (2012): PU to similar equation.

• Negative and positive solution (with $X_t(x)^{\beta}$ replaced by $|X_t(x)|^{\beta}$): (1) $\beta > \frac{3}{4}$: Mytnik and Perkins (2011): PU holds (2) $\beta \in (0, \frac{3}{4})$: non-uniqueness holds, Burdzy *et al.*(2010), Mueller *et al.*(2014) • Colored noise:replaced W by $\tilde{W}(ds, dx) = \tilde{W}(ds, x)dx = dx \int_{y \in \mathbb{R}} \rho(y - x)W(ds, dy)$ Sturm (2003): Existence; Mytnik *et al.* (2006): PU holds Rippl & Sturm (2013), Neuman (2014): Further work

We first consider

$$rac{\partial X_t(x)}{\partial t} = rac{1}{2} \Delta X_t(x) + X_t(x)^eta \dot{W}_t(x), \quad t>0, \; x\in \mathbb{R},$$

where $\{W(dt, dx)\}$ is a space-time Gaussian white noise.

- (Nonnegative solution) $\beta = \frac{1}{2}$:
- (1) The solution is the density of a SBM(Konno & Shiga(1988), Reimers(1989)).
- (2) Pathwise uniqueness (PU): unknown.
- (3) Xiong (2013): PU to SPDE for $\{Y_t\}, Y_t(x) := X_t(-\infty, x] := \int_{-\infty}^x X_t(y) dx$.
- Negative and positive solution (with X_t(x)^β replaced by |X_t(x)|^β): (1) β > ³/₄: Mytnik and Perkins (2011): PU holds (2) β ∈ (0, ³/₄): non-uniqueness holds, Burdzy *et al.*(2010), Mueller *et al.*(2014)
 Colored noise:replaced W by W̃(ds, dx) = W̃(ds, x)dx = dx ∫_{y∈ℝ} ρ(y - x)W(ds, dy)
 Sturm (2003): Existence: Mytnik *et al.* (2006): PU holds

We first consider

$$rac{\partial X_t(x)}{\partial t} = rac{1}{2} \Delta X_t(x) + X_t(x)^eta \dot{W}_t(x), \quad t>0, \; x\in \mathbb{R},$$

where $\{W(dt, dx)\}$ is a space-time Gaussian white noise.

- (Nonnegative solution) $\beta = \frac{1}{2}$:
- (1) The solution is the density of a SBM(Konno &Shiga(1988), Reimers(1989)).
- (2) Pathwise uniqueness (PU): unknown.
- (3) Xiong (2013): PU to SPDE for $\{Y_t\}$, $Y_t(x) := X_t(-\infty, x] := \int_{-\infty}^x X_t(y) dx$. Dawson and Li (2012): PU to similar equation.

• Negative and positive solution (with $X_t(x)^{\beta}$ replaced by $|X_t(x)|^{\beta}$): (1) $\beta > \frac{3}{4}$: Mytnik and Perkins (2011): PU holds (2) $\beta \in (0, \frac{3}{4})$: non-uniqueness holds, Burdzy *et al.*(2010), Mueller *et al.*(2014) • Colored noise:replaced W by $\tilde{W}(ds, dx) = \tilde{W}(ds, x)dx = dx \int_{y \in \mathbb{R}} \rho(y - x)W(ds, dy)$ Sturm (2003): Existence; Mytnik *et al.* (2006): PU holds Rippl & Sturm (2013), Neuman (2014): Further work

We first consider

$$rac{\partial X_t(x)}{\partial t} = rac{1}{2} \Delta X_t(x) + X_t(x)^eta \dot{W}_t(x), \quad t>0, \; x\in \mathbb{R},$$

where $\{W(dt, dx)\}$ is a space-time Gaussian white noise.

- (Nonnegative solution) $\beta = \frac{1}{2}$:
- (1) The solution is the density of a SBM(Konno & Shiga(1988), Reimers(1989)).
- (2) Pathwise uniqueness (PU): unknown.
- (3) Xiong (2013): PU to SPDE for $\{Y_t\}$, $Y_t(x) := X_t(-\infty, x] := \int_{-\infty}^x X_t(y) dx$. Dawson and Li (2012): PU to similar equation.

Negative and positive solution (with X_t(x)^β replaced by |X_t(x)|^β):
(1) β > ³/₄: Mytnik and Perkins (2011): PU holds
(2) β ∈ (0, ³/₄): non-uniqueness holds, Burdzy *et al.*(2010), Mueller *et al.*(2014)
Colored noise:replaced W by W(ds, dx) = W(ds, x)dx = dx ∫_{y∈ℝ} ρ(y - x)W(ds, dy)
Sturm (2003): Existence: Mytnik *et al.* (2006): PU holds

We first consider

$$rac{\partial X_t(x)}{\partial t} = rac{1}{2} \Delta X_t(x) + X_t(x)^eta \dot{W}_t(x), \quad t>0, \; x\in \mathbb{R},$$

where $\{W(dt, dx)\}$ is a space-time Gaussian white noise.

- (Nonnegative solution) $\beta = \frac{1}{2}$:
- (1) The solution is the density of a SBM(Konno &Shiga(1988), Reimers(1989)).
- (2) Pathwise uniqueness (PU): unknown.
- (3) Xiong (2013): PU to SPDE for $\{Y_t\}$, $Y_t(x) := X_t(-\infty, x] := \int_{-\infty}^x X_t(y) dx$. Dawson and Li (2012): PU to similar equation.

Negative and positive solution (with X_t(x)^β replaced by |X_t(x)|^β):
(1) β > ³/₄: Mytnik and Perkins (2011): PU holds
(2) β ∈ (0, ³/₄): non-uniqueness holds, Burdzy *et al.*(2010), Mueller *et al.*(2014)
Colored noise:replaced W by W(ds, dx) = W(ds, x)dx = dx ∫_{y∈ℝ} ρ(y - x)W(ds, dy)

Sturm (2003): Existence; Mytnik et al. (2006): PU holds

We first consider

$$rac{\partial X_t(x)}{\partial t} = rac{1}{2} \Delta X_t(x) + X_t(x)^eta \dot{W}_t(x), \quad t>0, \; x\in \mathbb{R},$$

where $\{W(dt, dx)\}$ is a space-time Gaussian white noise.

- (Nonnegative solution) $\beta = \frac{1}{2}$:
- (1) The solution is the density of a SBM(Konno & Shiga(1988), Reimers(1989)).
- (2) Pathwise uniqueness (PU): unknown.
- (3) Xiong (2013): PU to SPDE for $\{Y_t\}$, $Y_t(x) := X_t(-\infty, x] := \int_{-\infty}^x X_t(y) dx$. Dawson and Li (2012): PU to similar equation.
- Negative and positive solution (with $X_t(x)^{\beta}$ replaced by $|X_t(x)|^{\beta}$):
- (1) $\beta > \frac{3}{4}$: Mytnik and Perkins (2011): PU holds
- (2) $\beta \in (0, \frac{3}{4})$: non-uniqueness holds, Burdzy *et al.*(2010), Mueller *et al.*(2014)

•Colored noise:replaced W by $\tilde{W}(ds, dx) = \tilde{W}(ds, x)dx = dx \int_{y \in \mathbb{R}} \rho(y - x)W(ds, dy)$

Sturm (2003): Existence; Mytnik et al. (2006): PU holds

We first consider

$$rac{\partial X_t(x)}{\partial t} = rac{1}{2} \Delta X_t(x) + X_t(x)^eta \dot{W}_t(x), \quad t>0, \; x\in \mathbb{R},$$

where $\{W(dt, dx)\}$ is a space-time Gaussian white noise.

- (Nonnegative solution) $\beta = \frac{1}{2}$:
- (1) The solution is the density of a SBM(Konno & Shiga(1988), Reimers(1989)).
- (2) Pathwise uniqueness (PU): unknown.
- (3) Xiong (2013): PU to SPDE for $\{Y_t\}$, $Y_t(x) := X_t(-\infty, x] := \int_{-\infty}^x X_t(y) dx$. Dawson and Li (2012): PU to similar equation.
- Negative and positive solution (with $X_t(x)^{\beta}$ replaced by $|X_t(x)|^{\beta}$): (1) $\beta > \frac{3}{4}$: Mytnik and Perkins (2011): PU holds

(2) $\beta \in (0, \frac{3}{4})$: non-uniqueness holds, Burdzy *et al.*(2010), Mueller *et al.*(2014)

•Colored noise:replaced W by $\tilde{W}(ds, dx) = \tilde{W}(ds, x)dx = dx \int_{y \in \mathbb{R}} \rho(y - x)W(ds, dy)$

Sturm (2003): Existence; Mytnik et al. (2006): PU holds

We first consider

$$rac{\partial X_t(x)}{\partial t} = rac{1}{2} \Delta X_t(x) + X_t(x)^eta \dot{W}_t(x), \quad t>0, \; x\in \mathbb{R},$$

where $\{W(dt, dx)\}$ is a space-time Gaussian white noise.

- (Nonnegative solution) $\beta = \frac{1}{2}$:
- (1) The solution is the density of a SBM(Konno & Shiga(1988), Reimers(1989)).
- (2) Pathwise uniqueness (PU): unknown.
- (3) Xiong (2013): PU to SPDE for $\{Y_t\}$, $Y_t(x) := X_t(-\infty, x] := \int_{-\infty}^x X_t(y) dx$. Dawson and Li (2012): PU to similar equation.

Negative and positive solution (with X_t(x)^β replaced by |X_t(x)|^β): (1) β > ³/₄: Mytnik and Perkins (2011): PU holds (2) β ∈ (0, ³/₄): non-uniqueness holds, Burdzy *et al.*(2010), Mueller *et al.*(2014)
Colored noise:replaced W by W(ds, dx) = W(ds, x)dx = dx ∫_{y∈ℝ} ρ(y - x)W(ds, dy)
Sturm (2003): Existence; Mytnik *et al.* (2006): PU holds

We first consider

$$rac{\partial X_t(x)}{\partial t} = rac{1}{2} \Delta X_t(x) + X_t(x)^eta \dot{W}_t(x), \quad t>0, \; x\in \mathbb{R},$$

where $\{W(dt, dx)\}$ is a space-time Gaussian white noise.

- (Nonnegative solution) $\beta = \frac{1}{2}$:
- (1) The solution is the density of a SBM(Konno & Shiga(1988), Reimers(1989)).
- (2) Pathwise uniqueness (PU): unknown.
- (3) Xiong (2013): PU to SPDE for $\{Y_t\}$, $Y_t(x) := X_t(-\infty, x] := \int_{-\infty}^x X_t(y) dx$. Dawson and Li (2012): PU to similar equation.
- Negative and positive solution (with X_t(x)^β replaced by |X_t(x)|^β): (1) β > ³/₄: Mytnik and Perkins (2011): PU holds (2) β ∈ (0, ³/₄): non-uniqueness holds, Burdzy *et al.*(2010), Mueller *et al.*(2014)
 Colored noise:replaced W by W(ds, dx) = W(ds, x)dx = dx ∫_{y∈ℝ} ρ(y - x)W(ds, dy) Sturm (2003): Existence; Mytnik *et al.* (2006): PU holds
- Rippl & Sturm (2013), Neuman (2014): Further work

$$\frac{\partial X_t(x)}{\partial t} = \frac{1}{2} \Delta X_t(x) + X_t(x)^{\beta} \dot{L}_t(x), \quad t > 0, \ x \in \mathbb{R},$$
(1)

where L(ds, dx) is a one sided α -stable white noise without negative jumps. • $\alpha\beta = 1$:

- (1) The solution is the density of a SBM with α -stable branching.
- (2) PU: holds for $1 < \alpha < \sqrt{5} 1$ (Y.& Zhou (2017)), unknown for rest.
- (3) Fixed $t > 0, x \mapsto X_t(x)$ has continuous version ([MP03]) (*)
 - Locally Hölder ([FMW10])($\star\star$) and Hölder continuous ([FMW11]).

It is almost sure multifractal (Mytnik and Wachtel (2015))

- (4) He, Li and Y. (2014): PU to distribution-function-valued SPDE.
- $\alpha\beta \neq 1$: Y. & Zhou (2017): PU holds for certain $\alpha, \beta, (\star, \star\star)$ also hold.
- Our goal: Existence and PU hold for colored noise:

$$\frac{\partial X_t(x)}{\partial t} = \frac{1}{2} \Delta X_t(x) + X_t(x)^{\beta} \dot{L}_t(x), \quad t > 0, \ x \in \mathbb{R},$$
(1)

where L(ds, dx) is a one sided α -stable white noise without negative jumps. • $\alpha\beta = 1$:

- (1) The solution is the density of a SBM with α -stable branching.
- (2) PU: holds for $1 < \alpha < \sqrt{5} 1$ (Y.& Zhou (2017)), unknown for rest.
- (3) Fixed $t > 0, x \mapsto X_t(x)$ has continuous version ([MP03]) (*)
 - Locally Hölder ([FMW10])($\star\star$) and Hölder continuous ([FMW11]).

It is almost sure multifractal (Mytnik and Wachtel (2015))

- (4) He, Li and Y. (2014): PU to distribution-function-valued SPDE.
- $\alpha\beta \neq 1$: Y. & Zhou (2017): PU holds for certain $\alpha, \beta, (\star, \star\star)$ also hold.
- Our goal: Existence and PU hold for colored noise:

$$\frac{\partial X_t(x)}{\partial t} = \frac{1}{2} \Delta X_t(x) + X_t(x)^{\beta} \dot{L}_t(x), \quad t > 0, \ x \in \mathbb{R},$$
(1)

where L(ds, dx) is a one sided α -stable white noise without negative jumps. • $\alpha\beta = 1$:

- (1) The solution is the density of a SBM with α -stable branching.
- (2) PU: holds for $1 < \alpha < \sqrt{5} 1$ (Y.& Zhou (2017)), unknown for rest.
- (3) Fixed $t > 0, x \mapsto X_t(x)$ has continuous version ([MP03]) (*) Locally Hölder ([FMW10])(**) and Hölder continuous ([FMW11])

It is almost sure multifractal (Mytnik and Wachtel (2015))

- (4) He, Li and Y. (2014): PU to distribution-function-valued SPDE.
- $\alpha\beta \neq 1$: Y. & Zhou (2017): PU holds for certain $\alpha, \beta, (\star, \star\star)$ also hold.
- Our goal: Existence and PU hold for colored noise:

$$\frac{\partial X_t(x)}{\partial t} = \frac{1}{2} \Delta X_t(x) + X_t(x)^{\beta} \dot{L}_t(x), \quad t > 0, \ x \in \mathbb{R},$$
(1)

where L(ds, dx) is a one sided α -stable white noise without negative jumps. • $\alpha\beta = 1$:

- (1) The solution is the density of a SBM with α -stable branching. (2) PU: holds for $1 < \alpha < \sqrt{5} - 1$ (Y.& Zhou (2017)), unknown for rest.
- (3) Fixed t > 0, x → X_t(x) has continuous version ([MP03]) (*)
 Locally Hölder ([FMW10])(**) and Hölder continuous ([FMW11]).
 It is almost sure multifractal (Mytnik and Wachtel (2015))
- (4) He, Li and Y. (2014): PU to distribution-function-valued SPDE.
- $\alpha\beta \neq 1$: Y. & Zhou (2017): PU holds for certain $\alpha, \beta, (\star, \star\star)$ also hold.
- Our goal: Existence and PU hold for colored noise:

$$\frac{\partial X_t(x)}{\partial t} = \frac{1}{2} \Delta X_t(x) + X_t(x)^{\beta} \dot{L}_t(x), \quad t > 0, \ x \in \mathbb{R},$$
(1)

where L(ds, dx) is a one sided α -stable white noise without negative jumps. • $\alpha\beta = 1$:

- (1) The solution is the density of a SBM with α -stable branching.
- (2) PU: holds for $1 < \alpha < \sqrt{5} 1$ (Y.& Zhou (2017)), unknown for rest.
- (3) Fixed t > 0, x → X_t(x) has continuous version ([MP03]) (*)
 Locally Hölder ([FMW10])(**) and Hölder continuous ([FMW11]).
 It is almost sure multifractal (Mytnik and Wachtel (2015))
- (4) He, Li and Y. (2014): PU to distribution-function-valued SPDE.
- $\alpha\beta \neq 1$: Y. & Zhou (2017): PU holds for certain $\alpha, \beta, (\star, \star\star)$ also hold.
- Our goal: Existence and PU hold for colored noise:

$$\frac{\partial X_t(x)}{\partial t} = \frac{1}{2} \Delta X_t(x) + X_t(x)^{\beta} \dot{L}_t(x), \quad t > 0, \ x \in \mathbb{R},$$
(1)

where L(ds, dx) is a one sided α -stable white noise without negative jumps. • $\alpha\beta = 1$:

- (1) The solution is the density of a SBM with α -stable branching.
- (2) PU: holds for $1 < \alpha < \sqrt{5} 1$ (Y.& Zhou (2017)), unknown for rest.
- (3) Fixed t > 0, $x \mapsto X_t(x)$ has continuous version ([MP03]) (*)

Locally Hölder ([FMW10])(**) and Hölder continuous ([FMW11]). It is almost sure multifractal (Mytnik and Wachtel (2015))

(4) He, Li and Y. (2014): PU to distribution-function-valued SPDE.

αβ ≠ 1: Y. & Zhou (2017): PU holds for certain α, β, (*, **) also hold.
Our goal: Existence and PU hold for colored noise:

$$\frac{\partial X_t(x)}{\partial t} = \frac{1}{2} \Delta X_t(x) + X_t(x)^{\beta} \dot{L}_t(x), \quad t > 0, \ x \in \mathbb{R},$$
(1)

where L(ds, dx) is a one sided α -stable white noise without negative jumps. • $\alpha\beta = 1$:

- (1) The solution is the density of a SBM with α -stable branching.
- (2) PU: holds for $1 < \alpha < \sqrt{5} 1$ (Y.& Zhou (2017)), unknown for rest.
- (3) Fixed t > 0, $x \mapsto X_t(x)$ has continuous version ([MP03]) (*)

Locally Hölder ([FMW10])(**) and Hölder continuous ([FMW11]). It is almost sure multifractal (Mytnik and Wachtel (2015))

(4) He, Li and Y. (2014): PU to distribution-function-valued SPDE.

- $\alpha\beta \neq 1$: Y. & Zhou (2017): PU holds for certain $\alpha, \beta, (\star, \star\star)$ also hold.
- Our goal: Existence and PU hold for colored noise:

$$\frac{\partial X_t(x)}{\partial t} = \frac{1}{2} \Delta X_t(x) + X_t(x)^{\beta} \dot{L}_t(x), \quad t > 0, \ x \in \mathbb{R},$$
(1)

where L(ds, dx) is a one sided α -stable white noise without negative jumps. • $\alpha\beta = 1$:

- (1) The solution is the density of a SBM with α -stable branching.
- (2) PU: holds for $1 < \alpha < \sqrt{5} 1$ (Y.& Zhou (2017)), unknown for rest.
- (3) Fixed t > 0, $x \mapsto X_t(x)$ has continuous version ([MP03]) (*) Locally Hölder ([FMW10])(**) and Hölder continuous ([FMW11]).

It is almost sure multifractal (Mytnik and Wachtel (2015))

- (4) He, Li and Y. (2014): PU to distribution-function-valued SPDE.
- $\alpha\beta \neq 1$: Y. & Zhou (2017): PU holds for certain α, β , ($\star, \star\star$) also hold.
- Our goal: Existence and PU hold for colored noise: replaced *L* by $\tilde{L}(ds, dx) := \tilde{L}(ds, x)dx = dx \int_{y \in \mathbb{R}} h(y - x)L(ds, dy).$

Suppose that $\beta \ge 1 - 1/\alpha$ and $h \in L^{\theta}(\mathbb{R})^+$ for all $\theta > 0$. $\mathcal{X} := \{f : \int_{\mathbb{R}} |f(x)|e^{-|x|}dx < \infty\}$, equipped with weak convergence topology.

Theorem 1 (Existence)

If $X_0 \in \mathcal{X}^+$ with $\int_{\mathbb{R}} X_0(x)^p e^{-|x|} dx < \infty$ for all $p < \alpha$, then (1) has a solution:

$$\sup_{t\in[0,T]} \mathbb{E}\Big\{\int_{\mathbb{R}} X_t(x)^p e^{-|x|} dx\Big\} < \infty \text{ for all } p \in (0,\alpha).$$

Theorem 2 (PU)

If $\{X_t : t \ge 0\}$ and $\{Y_t : t \ge 0\}$ are two solutions to (1) with $X_0 = Y_0$, **P**-a.s.,

$$\mathbf{P}\Big\{\int_{\mathbb{R}}|X_t(x)-Y_t(x)|dx=0 \text{ for all } t\geq 0\Big\}=1.$$

Remark: PU for SDE holds with $\beta \ge 1 - 1/\alpha$ (Fu and Li (2010), Li and Mytnik (2011), and Li and Pu (2012)).

Suppose that $\beta \ge 1 - 1/\alpha$ and $h \in L^{\theta}(\mathbb{R})^+$ for all $\theta > 0$. $\mathcal{X} := \{f : \int_{\mathbb{R}} |f(x)|e^{-|x|}dx < \infty\}$, equipped with weak convergence topology.

Theorem 1 (Existence)

If $X_0 \in \mathcal{X}^+$ with $\int_{\mathbb{R}} X_0(x)^p e^{-|x|} dx < \infty$ for all $p < \alpha$, then (1) has a solution:

$$\sup_{t\in[0,T]} \mathbf{E}\Big\{\int_{\mathbb{R}} X_t(x)^p e^{-|x|} dx\Big\} < \infty \text{ for all } p \in (0,\alpha).$$

Theorem 2 (PU)

If $\{X_t : t \ge 0\}$ and $\{Y_t : t \ge 0\}$ are two solutions to (1) with $X_0 = Y_0$, **P**-a.s.,

$$\mathbf{P}\Big\{\int_{\mathbb{R}}^{t} |X_t(x) - Y_t(x)| dx = 0 \text{ for all } t \ge 0\Big\} = 1.$$

Remark: PU for SDE holds with $\beta \ge 1 - 1/\alpha$ (Fu and Li (2010), Li and Mytnik (2011), and Li and Pu (2012)).

Suppose that $\beta \ge 1 - 1/\alpha$ and $h \in L^{\theta}(\mathbb{R})^+$ for all $\theta > 0$. $\mathcal{X} := \{f : \int_{\mathbb{R}} |f(x)|e^{-|x|}dx < \infty\}$, equipped with weak convergence topology.

Theorem 1 (Existence)

If $X_0 \in \mathcal{X}^+$ with $\int_{\mathbb{R}} X_0(x)^p e^{-|x|} dx < \infty$ for all $p < \alpha$, then (1) has a solution:

$$\sup_{t\in[0,T]} \mathbf{E}\Big\{\int_{\mathbb{R}} X_t(x)^p e^{-|x|} dx\Big\} < \infty \text{ for all } p \in (0,\alpha).$$

Theorem 2 (PU)

If $\{X_t : t \ge 0\}$ and $\{Y_t : t \ge 0\}$ are two solutions to (1) with $X_0 = Y_0$, **P**-a.s.,

$$\mathbf{P}\Big\{\int_{\mathbb{R}}|X_t(x)-Y_t(x)|dx=0 \text{ for all } t\geq 0\Big\}=1.$$

Remark: PU for SDE holds with $\beta \ge 1 - 1/\alpha$ (Fu and Li (2010), Li and Mytnik (2011), and Li and Pu (2012)).

Suppose that $\beta \ge 1 - 1/\alpha$ and $h \in L^{\theta}(\mathbb{R})^+$ for all $\theta > 0$. $\mathcal{X} := \{f : \int_{\mathbb{R}} |f(x)|e^{-|x|}dx < \infty\}$, equipped with weak convergence topology.

Theorem 1 (Existence)

If $X_0 \in \mathcal{X}^+$ with $\int_{\mathbb{R}} X_0(x)^p e^{-|x|} dx < \infty$ for all $p < \alpha$, then (1) has a solution:

$$\sup_{t\in[0,T]} \mathbf{E}\Big\{\int_{\mathbb{R}} X_t(x)^p e^{-|x|} dx\Big\} < \infty \text{ for all } p \in (0,\alpha).$$

Theorem 2 (PU)

If $\{X_t : t \ge 0\}$ and $\{Y_t : t \ge 0\}$ are two solutions to (1) with $X_0 = Y_0$, **P**-a.s.,

$$\mathbf{P}\Big\{\int_{\mathbb{R}}|X_t(x)-Y_t(x)|dx=0 \text{ for all } t\geq 0\Big\}=1.$$

Remark: PU for SDE holds with $\beta \ge 1 - 1/\alpha$ (Fu and Li (2010), Li and Mytnik (2011), and Li and Pu (2012)).

By (1),

$$X_t(x) = X_0(x) + \frac{1}{2} \int_0^t \Delta X_s(x) ds + \int_0^t \int_{\mathbb{R}} X_{s-}(x)^{\beta} h(y-x) L(ds, dy).$$

Inspired by Sturm (2003), we prove that SDE system has strong PU solution:

$$u_t^n(x^n) = u_0^n(x^n) + \frac{1}{2} \int_0^t \Delta^n u_s^n(x^n) ds + \int_0^t \int_{\mathbb{R}} [u_{s-}^n(x^n)]^\beta h^n(y, x^n) L(ds, dy), \quad (2)$$

where $x^n \in \frac{\mathbb{Z}}{n}, I_x^n := (x - \frac{1}{2n}, x + \frac{1}{2n}],$

$$u_0^n(x) := n \int_{I_x^n} u_0(v) dv, \quad h^n(y,x) := n \int_{I_x^n} h(y-v) dv$$

and Δ^n is a discrete Laplacian operator defined by

$$\Delta^n f(z) := n^2 [f(z+1/n) + f(z-1/n) - 2f(z)].$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

By (1),

$$X_t(x) = X_0(x) + \frac{1}{2} \int_0^t \Delta X_s(x) ds + \int_0^t \int_{\mathbb{R}} X_{s-}(x)^{\beta} h(y-x) L(ds, dy).$$

Inspired by Sturm (2003), we prove that SDE system has strong PU solution:

$$u_t^n(x^n) = u_0^n(x^n) + \frac{1}{2} \int_0^t \Delta^n u_s^n(x^n) ds + \int_0^t \int_{\mathbb{R}} [u_{s-}^n(x^n)]^\beta h^n(y, x^n) L(ds, dy), \quad (2)$$

where $x^n \in \frac{\mathbb{Z}}{n}$, $I_x^n := (x - \frac{1}{2n}, x + \frac{1}{2n}]$,

$$u_0^n(x) := n \int_{I_x^n} u_0(v) dv, \quad h^n(y,x) := n \int_{I_x^n} h(y-v) dv$$

and Δ^n is a discrete Laplacian operator defined by

$$\Delta^n f(z) := n^2 [f(z+1/n) + f(z-1/n) - 2f(z)].$$

By (1),

$$(X_t,f) = (X_0,f) + \frac{1}{2} \int_0^t (X_s,\Delta f) ds + \int_0^t \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x)^\beta h(y-x) f(x) dx \right] L(ds,A)$$

• { B_t }: Brownian motion independent of { $X_t : t \ge 0$ }, $\xi_t^r := B_t - B_r$. • T > 0 be fixed and $X_t^{\delta}(x) := (X_t, p_{\delta}(x - \cdot)), p_{\delta}(x) := \frac{1}{\sqrt{2\pi\delta}}e^{-x^2/(2\delta)}$.

• $L(ds, dy) = \int_0^\infty z \tilde{N}(ds, dz, dy)$. Then we have backward doubly SDE:

$$\begin{aligned} X_{T-t}^{\delta}(\xi_t^r+x) &= X_T^{\delta}(\xi_T^r+x) + \int_t^T \nabla X_{T-s}^{\delta}(\xi_s^r+x) dB_s \\ &+ \int_{t-}^{T-} \int_0^\infty \int_{\mathbb{R}} \Big[\int_{\mathbb{R}} p_{\delta}(\xi_s^r+x-v) h(y-v) X_{T-s}(v)^{\beta} dv \Big] z \tilde{N}(\overleftarrow{ds}, dz, dy). \end{aligned}$$

• { Y_t }: another solution to (1) with $Y_0 = X_0$ and independent of { B_t }. • $\bar{X}_t := X_{T-t} - Y_{T-t}, \bar{X}_t^{\delta,r}(x) := \bar{X}_t^{\delta}(\xi_t^r + x),$ $\bar{H}_t^{\delta,r}(x,y) := \int_{\mathbb{R}} p_{\delta}(\xi_t^r + x - v)h(y - v)[X_{T-t}(v)^{\beta} - Y_{T-t}(y)^{\beta}] dv$; z = b

By (1),

$$(X_{t},f) = (X_{0},f) + \frac{1}{2} \int_{0}^{t} (X_{s},\Delta f) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x)^{\beta} h(y-x) f(x) dx \right] L(ds,ds) ds$$

• {*B_t*}: Brownian motion independent of {*X_t* : *t* ≥ 0}, $\xi_t^r := B_t - B_r$. • *T* > 0 be fixed and $X_t^{\delta}(x) := (X_t, p_{\delta}(x - \cdot)), p_{\delta}(x) := \frac{1}{\sqrt{2\pi\delta}}e^{-x^2/(2\delta)}$. • *L*(*ds*, *dy*) = $\int_0^\infty z\tilde{N}(ds, dz, dy)$. Then we have backward doubly SDE:

$$\begin{aligned} X_{T-t}^{\delta}(\xi_t^r+x) &= X_T^{\delta}(\xi_T^r+x) + \int_t^T \nabla X_{T-s}^{\delta}(\xi_s^r+x) dB_s \\ &+ \int_{t-}^{T-} \int_0^\infty \int_{\mathbb{R}} \Big[\int_{\mathbb{R}} p_{\delta}(\xi_s^r+x-v) h(y-v) X_{T-s}(v)^{\beta} dv \Big] z \tilde{N}(\overleftarrow{ds}, dz, dy). \end{aligned}$$

• { Y_t }: another solution to (1) with $Y_0 = X_0$ and independent of { B_t }. • $\bar{X}_t := X_{T-t} - Y_{T-t}, \bar{X}_t^{\delta,r}(x) := \bar{X}_t^{\delta}(\xi_t^r + x),$ $\bar{H}_t^{\delta,r}(x,y) := \int_{\mathbb{R}} p_{\delta}(\xi_t^r + x - v)h(y - v)[X_{T-t}(v)^{\beta} - Y_{T-t}(y)^{\beta}] dy$, is a

By (1),

$$(X_{t},f) = (X_{0},f) + \frac{1}{2} \int_{0}^{t} (X_{s},\Delta f) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x)^{\beta} h(y-x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x)^{\beta} h(y-x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x)^{\beta} h(y-x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x)^{\beta} h(y-x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x)^{\beta} h(y-x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x)^{\beta} h(y-x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x)^{\beta} h(y-x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x)^{\beta} h(y-x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x)^{\beta} h(y-x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x)^{\beta} h(y-x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x)^{\beta} h(y-x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x)^{\beta} h(y-x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{$$

• { B_t }: Brownian motion independent of { $X_t : t \ge 0$ }, $\xi_t^r := B_t - B_r$.

• T > 0 be fixed and $X_t^{\delta}(x) := (X_t, p_{\delta}(x - \cdot)), p_{\delta}(x) := \frac{1}{\sqrt{2\pi\delta}} e^{-x^2/(2\delta)}.$

• $L(ds, dy) = \int_0^\infty z \tilde{N}(ds, dz, dy)$. Then we have backward doubly SDE:

$$\begin{aligned} X_{T-t}^{\delta}(\xi_t^r+x) &= X_T^{\delta}(\xi_T^r+x) + \int_t^T \nabla X_{T-s}^{\delta}(\xi_s^r+x) dB_s \\ &+ \int_{t-}^{T-} \int_0^\infty \int_{\mathbb{R}} \Big[\int_{\mathbb{R}} p_{\delta}(\xi_s^r+x-v) h(y-v) X_{T-s}(v)^{\beta} dv \Big] z \tilde{N}(\overleftarrow{ds}, dz, dy). \end{aligned}$$

• { Y_t }: another solution to (1) with $Y_0 = X_0$ and independent of { B_t }. • $\bar{X}_t := X_{T-t} - Y_{T-t}, \bar{X}_t^{\delta,r}(x) := \bar{X}_t^{\delta}(\xi_t^r + x),$ $\bar{H}_t^{\delta,r}(x,y) := \int_{\mathbb{R}} p_{\delta}(\xi_t^r + x - v)h(y - v)[X_{T-t}(v)^{\beta} - Y_{T-t}(y)^{\beta}] dv, \quad z \to \infty$

By (1),

$$(X_{t},f) = (X_{0},f) + \frac{1}{2} \int_{0}^{t} (X_{s},\Delta f) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x)^{\beta} h(y-x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x)^{\beta} h(y-x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x)^{\beta} h(y-x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x)^{\beta} h(y-x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x)^{\beta} h(y-x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x)^{\beta} h(y-x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x)^{\beta} h(y-x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x)^{\beta} h(y-x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x)^{\beta} h(y-x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x)^{\beta} h(y-x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x)^{\beta} h(y-x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x)^{\beta} h(y-x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{$$

- { B_t }: Brownian motion independent of { $X_t : t \ge 0$ }, $\xi_t^r := B_t B_r$.
- T > 0 be fixed and $X_t^{\delta}(x) := (X_t, p_{\delta}(x \cdot)), p_{\delta}(x) := \frac{1}{\sqrt{2\pi\delta}} e^{-x^2/(2\delta)}.$
- $L(ds, dy) = \int_0^\infty z \tilde{N}(ds, dz, dy)$. Then we have backward doubly SDE:

$$\begin{aligned} X_{T-t}^{\delta}(\xi_t^r+x) &= X_T^{\delta}(\xi_T^r+x) + \int_t^T \nabla X_{T-s}^{\delta}(\xi_s^r+x) dB_s \\ &+ \int_{t-}^{T-} \int_0^\infty \int_{\mathbb{R}} \Big[\int_{\mathbb{R}} p_{\delta}(\xi_s^r+x-v) h(y-v) X_{T-s}(v)^{\beta} dv \Big] z \tilde{N}(\overleftarrow{ds}, dz, dy). \end{aligned}$$

• { Y_t }: another solution to (1) with $Y_0 = X_0$ and independent of { B_t }. • $\bar{X}_t := X_{T-t} - Y_{T-t}, \bar{X}_t^{\delta,r}(x) := \bar{X}_t^{\delta}(\xi_t^r + x),$ $\bar{H}_t^{\delta,r}(x,y) := \int_{\mathbb{R}} p_{\delta}(\xi_t^r + x - v)h(y - v)[X_{T-t}(v)^{\beta} - Y_{T-t}(y)^{\beta}] dv, \quad z \in \mathcal{F}$

By (1),

$$(X_{t},f) = (X_{0},f) + \frac{1}{2} \int_{0}^{t} (X_{s},\Delta f) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x)^{\beta} h(y-x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x)^{\beta} h(y-x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x)^{\beta} h(y-x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x)^{\beta} h(y-x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x)^{\beta} h(y-x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x)^{\beta} h(y-x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x)^{\beta} h(y-x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x)^{\beta} h(y-x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x)^{\beta} h(y-x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x)^{\beta} h(y-x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x)^{\beta} h(y-x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x)^{\beta} h(y-x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{$$

- { B_t }: Brownian motion independent of { $X_t : t \ge 0$ }, $\xi_t^r := B_t B_r$.
- T > 0 be fixed and $X_t^{\delta}(x) := (X_t, p_{\delta}(x \cdot)), p_{\delta}(x) := \frac{1}{\sqrt{2\pi\delta}} e^{-x^2/(2\delta)}.$
- $L(ds, dy) = \int_0^\infty z \tilde{N}(ds, dz, dy)$. Then we have backward doubly SDE:

$$\begin{aligned} X_{T-t}^{\delta}(\xi_t^r+x) &= X_T^{\delta}(\xi_T^r+x) + \int_t^T \nabla X_{T-s}^{\delta}(\xi_s^r+x) dB_s \\ &+ \int_{t-}^{T-} \int_0^\infty \int_{\mathbb{R}} \Big[\int_{\mathbb{R}} p_{\delta}(\xi_s^r+x-v) h(y-v) X_{T-s}(v)^{\beta} dv \Big] z \tilde{N}(\overleftarrow{ds}, dz, dy). \end{aligned}$$

• { Y_t }: another solution to (1) with $Y_0 = X_0$ and independent of { B_t }. • $\bar{X}_t := X_{T-t} - Y_{T-t}, \bar{X}_t^{\delta,r}(x) := \bar{X}_t^{\delta}(\xi_t^r + x),$ $\bar{H}_t^{\delta,r}(x,y) := \int_{\mathbb{R}} p_{\delta}(\xi_t^r + x - v)h(y - v)[X_{T-t}(v)^{\beta} - Y_{T-t}(y)^{\beta}] dv$, is a

By (1),

$$(X_{t},f) = (X_{0},f) + \frac{1}{2} \int_{0}^{t} (X_{s},\Delta f) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x)^{\beta} h(y-x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x)^{\beta} h(y-x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x)^{\beta} h(y-x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x)^{\beta} h(y-x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x)^{\beta} h(y-x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x)^{\beta} h(y-x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x)^{\beta} h(y-x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x)^{\beta} h(y-x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x)^{\beta} h(y-x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x)^{\beta} h(y-x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x)^{\beta} h(y-x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x)^{\beta} h(y-x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{$$

- { B_t }: Brownian motion independent of { $X_t : t \ge 0$ }, $\xi_t^r := B_t B_r$.
- T > 0 be fixed and $X_t^{\delta}(x) := (X_t, p_{\delta}(x \cdot)), p_{\delta}(x) := \frac{1}{\sqrt{2\pi\delta}} e^{-x^2/(2\delta)}.$
- $L(ds, dy) = \int_0^\infty z \tilde{N}(ds, dz, dy)$. Then we have backward doubly SDE:

$$\begin{aligned} X_{T-t}^{\delta}(\xi_t^r+x) &= X_T^{\delta}(\xi_T^r+x) + \int_t^T \nabla X_{T-s}^{\delta}(\xi_s^r+x) dB_s \\ &+ \int_{t-}^{T-} \int_0^\infty \int_{\mathbb{R}} \Big[\int_{\mathbb{R}} p_{\delta}(\xi_s^r+x-v) h(y-v) X_{T-s}(v)^{\beta} dv \Big] z \tilde{N}(\overleftarrow{ds}, dz, dy). \end{aligned}$$

• { Y_t }: another solution to (1) with $Y_0 = X_0$ and independent of { B_t }. • $\bar{X}_t := X_{T-t} - Y_{T-t}, \bar{X}_t^{\delta,r}(x) := \bar{X}_t^{\delta}(\xi_t^r + x),$ $\bar{H}_t^{\delta,r}(x,y) := \int_{\mathbb{R}} p_{\delta}(\xi_t^r + x - v)h(y - v)[X_{T-t}(v)^{\beta} - Y_{T-t}(y)^{\beta}] dy$; z = 1

By (1),

$$(X_{t},f) = (X_{0},f) + \frac{1}{2} \int_{0}^{t} (X_{s},\Delta f) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x)^{\beta} h(y-x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x)^{\beta} h(y-x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x)^{\beta} h(y-x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x)^{\beta} h(y-x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x)^{\beta} h(y-x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x)^{\beta} h(y-x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x)^{\beta} h(y-x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x)^{\beta} h(y-x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x)^{\beta} h(y-x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x)^{\beta} h(y-x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x)^{\beta} h(y-x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x)^{\beta} h(y-x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x) f(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x) dx \right] L(ds,A) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{$$

- { B_t }: Brownian motion independent of { $X_t : t \ge 0$ }, $\xi_t^r := B_t B_r$.
- T > 0 be fixed and $X_t^{\delta}(x) := (X_t, p_{\delta}(x \cdot)), p_{\delta}(x) := \frac{1}{\sqrt{2\pi\delta}} e^{-x^2/(2\delta)}.$
- $L(ds, dy) = \int_0^\infty z \tilde{N}(ds, dz, dy)$. Then we have backward doubly SDE:

$$\begin{aligned} X_{T-t}^{\delta}(\xi_t^r+x) &= X_T^{\delta}(\xi_T^r+x) + \int_t^T \nabla X_{T-s}^{\delta}(\xi_s^r+x) dB_s \\ &+ \int_{t-}^{T-} \int_0^\infty \int_{\mathbb{R}} \Big[\int_{\mathbb{R}} p_{\delta}(\xi_s^r+x-v) h(y-v) X_{T-s}(v)^{\beta} dv \Big] z \tilde{N}(\overleftarrow{ds}, dz, dy). \end{aligned}$$

• { Y_t }: another solution to (1) with $Y_0 = X_0$ and independent of { B_t }. • $\bar{X}_t := X_{T-t} - Y_{T-t}, \bar{X}_t^{\delta,r}(x) := \bar{X}_t^{\delta}(\xi_t^r + x),$ $\bar{H}_t^{\delta,r}(x,y) := \int_{\mathbb{R}} p_{\delta}(\xi_t^r + x - v)h(y - v)[X_{T-t}(v)^{\beta} - Y_{T-t}(y)^{\beta}] dv$; $A \equiv A$

By (1),

$$(X_{t},f) = (X_{0},f) + \frac{1}{2} \int_{0}^{t} (X_{s},\Delta f) ds + \int_{0}^{t} \int_{\mathbb{R}} \left[\int_{\mathbb{R}} X_{s-}(x)^{\beta} h(y-x) f(x) dx \right] L(ds,A) ds$$

- { B_t }: Brownian motion independent of { $X_t : t \ge 0$ }, $\xi_t^r := B_t B_r$.
- T > 0 be fixed and $X_t^{\delta}(x) := (X_t, p_{\delta}(x \cdot)), p_{\delta}(x) := \frac{1}{\sqrt{2\pi\delta}} e^{-x^2/(2\delta)}.$
- $L(ds, dy) = \int_0^\infty z \tilde{N}(ds, dz, dy)$. Then we have backward doubly SDE:

$$\begin{aligned} X_{T-t}^{\delta}(\xi_t^r+x) &= X_T^{\delta}(\xi_T^r+x) + \int_t^T \nabla X_{T-s}^{\delta}(\xi_s^r+x) dB_s \\ &+ \int_{t-}^{T-} \int_0^\infty \int_{\mathbb{R}} \Big[\int_{\mathbb{R}} p_{\delta}(\xi_s^r+x-v) h(y-v) X_{T-s}(v)^{\beta} dv \Big] z \tilde{N}(\overleftarrow{ds}, dz, dy). \end{aligned}$$

• { Y_t }: another solution to (1) with $Y_0 = X_0$ and independent of { B_t }. • $\bar{X}_t := X_{T-t} - Y_{T-t}, \bar{X}_t^{\delta,r}(x) := \bar{X}_t^{\delta}(\xi_t^r + x),$ $\bar{H}_t^{\delta,r}(x,y) := \int_{\mathbb{R}} p_{\delta}(\xi_t^r + x - v)h(y - v)[X_{T-t}(v)^{\beta} - Y_{T-t}(y)^{\beta}]dv.$

$$\bar{X}_t^{\delta,r}(x) = \int_t^T \nabla \bar{X}_s^{\delta,r}(x) dB_s + \int_{t-}^{T-} \int_0^\infty \int_{\mathbb{R}} H_s^{\delta,r}(x,y) z \tilde{N}(\overleftarrow{ds},dz,dy).$$

• $\phi_n(x) := \int_0^{|x|} dy \int_0^y \psi_n(z) dz$ with $a_n := \exp\{-n(n+1)/2\}, \int_{a_n}^{a_{n-1}} \psi_n(x) dx = 1$ and $0 \le \psi_n(x) \le 2n^{-1}x^{-1}1_{(a_n,a_{n-1})}(x)$. Then $\phi_n'' \ge 0$. • By Itô's formula,

$$\begin{split} \phi_n(\bar{X}_t^{\delta,r}(x)) &= -\frac{1}{2} \int_t^T \phi_n''(\bar{X}_s^{\delta,r}(x)) |\nabla \bar{X}_s^{\delta,r}(x)|^2 ds - \int_t^T \phi_n'(\bar{X}_s^{\delta,r}(x)) \nabla \bar{X}_s^{\delta,r}(x) dB_s \\ &+ \int_t^T ds \int_{\mathbb{R}} dy \int_0^\infty \mathcal{D}_n(\bar{X}_s^{\delta,r}(x), z\bar{H}_s^{\delta,r}(x, y)) \pi(dz) \\ &+ \int_{t^-}^{T^-} \int_0^\infty \int_{\mathbb{R}} D_n(\bar{X}_s^{\delta,r}(x), z\bar{H}_{s+}^{\delta,r}(x, y)) \widetilde{N}(\overleftarrow{ds}, dz, dy), \end{split}$$

$$\bar{X}_t^{\delta,r}(x) = \int_t^T \nabla \bar{X}_s^{\delta,r}(x) dB_s + \int_{t-}^{T-} \int_0^\infty \int_{\mathbb{R}} H_s^{\delta,r}(x,y) z \tilde{N}(\overleftarrow{ds},dz,dy).$$

• $\phi_n(x) := \int_0^{|x|} dy \int_0^y \psi_n(z) dz$ with $a_n := \exp\{-n(n+1)/2\}, \int_{a_n}^{a_{n-1}} \psi_n(x) dx = 1$ and $0 \le \psi_n(x) \le 2n^{-1}x^{-1}1_{(a_n,a_{n-1})}(x)$. Then $\phi_n'' \ge 0$. • By Itô's formula,

$$\begin{split} \phi_n(\bar{X}_t^{\delta,r}(x)) &= -\frac{1}{2} \int_t^T \phi_n''(\bar{X}_s^{\delta,r}(x)) |\nabla \bar{X}_s^{\delta,r}(x)|^2 ds - \int_t^T \phi_n'(\bar{X}_s^{\delta,r}(x)) \nabla \bar{X}_s^{\delta,r}(x) dB_s \\ &+ \int_t^T ds \int_{\mathbb{R}} dy \int_0^\infty \mathcal{D}_n(\bar{X}_s^{\delta,r}(x), z\bar{H}_s^{\delta,r}(x, y)) \pi(dz) \\ &+ \int_{t^-}^{T^-} \int_0^\infty \int_{\mathbb{R}} D_n(\bar{X}_s^{\delta,r}(x), z\bar{H}_{s+}^{\delta,r}(x, y)) \widetilde{N}(\overleftarrow{ds}, dz, dy), \end{split}$$

$$\bar{X}_t^{\delta,r}(x) = \int_t^T \nabla \bar{X}_s^{\delta,r}(x) dB_s + \int_{t-}^{T-} \int_0^\infty \int_{\mathbb{R}} H_s^{\delta,r}(x,y) z \tilde{N}(\overleftarrow{ds},dz,dy).$$

• $\phi_n(x) := \int_0^{|x|} dy \int_0^y \psi_n(z) dz$ with $a_n := \exp\{-n(n+1)/2\}, \int_{a_n}^{a_{n-1}} \psi_n(x) dx = 1$ and $0 \le \psi_n(x) \le 2n^{-1}x^{-1}\mathbf{1}_{(a_n,a_{n-1})}(x)$. Then $\phi_n'' \ge 0$. • By Itô's formula,

$$\begin{split} \phi_n(\bar{X}_t^{\delta,r}(x)) &= -\frac{1}{2} \int_t^T \phi_n''(\bar{X}_s^{\delta,r}(x)) |\nabla \bar{X}_s^{\delta,r}(x)|^2 ds - \int_t^T \phi_n'(\bar{X}_s^{\delta,r}(x)) \nabla \bar{X}_s^{\delta,r}(x) dB_s \\ &+ \int_t^T ds \int_{\mathbb{R}} dy \int_0^\infty \mathcal{D}_n(\bar{X}_s^{\delta,r}(x), z\bar{H}_s^{\delta,r}(x, y)) \pi(dz) \\ &+ \int_{t^-}^{T^-} \int_0^\infty \int_{\mathbb{R}} D_n(\bar{X}_s^{\delta,r}(x), z\bar{H}_{s+}^{\delta,r}(x, y)) \widetilde{N}(\overleftarrow{ds}, dz, dy), \end{split}$$

$$\bar{X}_t^{\delta,r}(x) = \int_t^T \nabla \bar{X}_s^{\delta,r}(x) dB_s + \int_{t-}^{T-} \int_0^\infty \int_{\mathbb{R}} H_s^{\delta,r}(x,y) z \tilde{N}(\overleftarrow{ds},dz,dy).$$

• $\phi_n(x) := \int_0^{|x|} dy \int_0^y \psi_n(z) dz$ with $a_n := \exp\{-n(n+1)/2\}, \int_{a_n}^{a_{n-1}} \psi_n(x) dx = 1$ and $0 \le \psi_n(x) \le 2n^{-1}x^{-1}1_{(a_n,a_{n-1})}(x)$. Then $\phi_n'' \ge 0$. • By Itô's formula,

$$\begin{split} \phi_n(\bar{X}_t^{\delta,r}(x)) &= -\frac{1}{2} \int_t^T \phi_n''(\bar{X}_s^{\delta,r}(x)) |\nabla \bar{X}_s^{\delta,r}(x)|^2 ds - \int_t^T \phi_n'(\bar{X}_s^{\delta,r}(x)) \nabla \bar{X}_s^{\delta,r}(x) dB_s \\ &+ \int_t^T ds \int_{\mathbb{R}} dy \int_0^\infty \mathcal{D}_n(\bar{X}_s^{\delta,r}(x), z\bar{H}_s^{\delta,r}(x, y)) \pi(dz) \\ &+ \int_{t-}^{T-} \int_0^\infty \int_{\mathbb{R}} D_n(\bar{X}_s^{\delta,r}(x), z\bar{H}_{s+}^{\delta,r}(x, y)) \widetilde{N}(\overleftarrow{ds}, dz, dy), \end{split}$$

$$\bar{X}_t^{\delta,r}(x) = \int_t^T \nabla \bar{X}_s^{\delta,r}(x) dB_s + \int_{t-}^{T-} \int_0^\infty \int_{\mathbb{R}} H_s^{\delta,r}(x,y) z \tilde{N}(\overleftarrow{ds},dz,dy).$$

• $\phi_n(x) := \int_0^{|x|} dy \int_0^y \psi_n(z) dz$ with $a_n := \exp\{-n(n+1)/2\}, \int_{a_n}^{a_{n-1}} \psi_n(x) dx = 1$ and $0 \le \psi_n(x) \le 2n^{-1}x^{-1}1_{(a_n,a_{n-1})}(x)$. Then $\phi_n'' \ge 0$. • By Itô's formula,

$$\begin{split} \phi_n(\bar{X}_t^{\delta,r}(x)) &= -\frac{1}{2} \int_t^T \phi_n''(\bar{X}_s^{\delta,r}(x)) |\nabla \bar{X}_s^{\delta,r}(x)|^2 ds - \int_t^T \phi_n'(\bar{X}_s^{\delta,r}(x)) \nabla \bar{X}_s^{\delta,r}(x) dB_s \\ &+ \int_t^T ds \int_{\mathbb{R}} dy \int_0^\infty \mathcal{D}_n(\bar{X}_s^{\delta,r}(x), z\bar{H}_s^{\delta,r}(x, y)) \pi(dz) \\ &+ \int_{t-}^{T-} \int_0^\infty \int_{\mathbb{R}} D_n(\bar{X}_s^{\delta,r}(x), z\bar{H}_{s+}^{\delta,r}(x, y)) \widetilde{N}(\overleftarrow{ds}, dz, dy), \end{split}$$

$$\mathbf{E}\left\{\phi_n(\bar{X}_t^{\delta,r}(x))\right\} \leq \mathbf{E}\left\{\int_t^T ds \int_{\mathbb{R}} dy \int_0^\infty \mathcal{D}_n(\bar{X}_s^{\delta,r}(x), z\bar{H}_s^{\delta,r}(x,y))\pi(dz)\right\},$$

• Letting $\delta \to 0$,

$$\mathbf{E}\Big\{\phi_n(\bar{X}_t^r(x))\Big\} \leq \mathbf{E}\Big\{\int_t^T ds \int_{\mathbb{R}} dy \int_0^\infty \mathcal{D}_n(\bar{X}_s^r(x), z\bar{H}_s^r(x, y))\pi(dz)\Big\},\$$

where $\bar{X}_{t}^{r}(x) := \bar{X}_{t}(\xi_{t}^{r} + x)$ and $\bar{H}_{s}^{r}(x, y) := h(y - (\xi_{s}^{r} + x))[X_{T-s}(\xi_{s}^{r} + x)^{\beta} - X_{T-s}(\xi_{s}^{r} + x)^{\beta}].$

$$\mathbf{E}\Big\{\phi_n(\bar{X}_t^{\delta,r}(x))\Big\} \leq \mathbf{E}\Big\{\int_t^T ds \int_{\mathbb{R}} dy \int_0^\infty \mathcal{D}_n(\bar{X}_s^{\delta,r}(x), z\bar{H}_s^{\delta,r}(x,y))\pi(dz)\Big\},$$

• Letting $\delta \rightarrow 0$,

$$\mathbf{E}\Big\{\phi_n(\bar{X}_t^r(x))\Big\} \leq \mathbf{E}\Big\{\int_t^T ds \int_{\mathbb{R}} dy \int_0^\infty \mathcal{D}_n(\bar{X}_s^r(x), z\bar{H}_s^r(x, y))\pi(dz)\Big\},$$

where $\bar{X}_t^r(x) := \bar{X}_t(\xi_t^r + x)$ and $\bar{H}_s^r(x, y) := h(y - (\xi_s^r + x))[X_{T-s}(\xi_s^r + x)^\beta - Y_{T-s}(\xi_s^r + x)^\beta].$

▲ロト▲聞と▲臣と▲臣と 臣 のへの

$$\mathbf{E}\Big\{\phi_n(\bar{X}_t^{\delta,r}(x))\Big\} \leq \mathbf{E}\Big\{\int_t^T ds \int_{\mathbb{R}} dy \int_0^\infty \mathcal{D}_n(\bar{X}_s^{\delta,r}(x), z\bar{H}_s^{\delta,r}(x,y))\pi(dz)\Big\},$$

• Letting $\delta \rightarrow 0$,

$$\mathbf{E}\Big\{\phi_n(\bar{X}_t^r(x))\Big\} \leq \mathbf{E}\Big\{\int_t^T ds \int_{\mathbb{R}} dy \int_0^\infty \mathcal{D}_n(\bar{X}_s^r(x), z\bar{H}_s^r(x, y))\pi(dz)\Big\},$$

where $\bar{X}_t^r(x) := \bar{X}_t(\xi_t^r + x)$ and $\bar{H}_s^r(x, y) := h(y - (\xi_s^r + x))[X_{T-s}(\xi_s^r + x)^\beta - Y_{T-s}(\xi_s^r + x)^\beta].$

▲ロト▲聞と▲臣と▲臣と 臣 のへの

- Since $|\phi'_n| \le 1$, $|\mathcal{D}_n(y,z)| = |\phi_n(y+z) \phi_n(z) z\phi'_n(y)| \le 2|z|$.
- For y(y + z) > 0, we have $\mathcal{D}_n(y, z) \le 2n^{-1}z^2/|y|$.
- Then for $\theta, \gamma > 0$, $(\pi(dz) = cz^{-1-\alpha}dz)$,

$$\int_{0}^{\infty} \mathcal{D}_{n}(\bar{X}_{s}^{r}(x), z\bar{H}_{s}^{r}(x, y))\pi(dz)$$

$$= \int_{0}^{n^{\gamma}|\bar{X}_{s}^{r}(x)|^{\theta}} \mathcal{D}_{n}(\bar{X}_{s}^{r}(x), z\bar{H}_{s}^{r}(x, y))\pi(dz) + \int_{n^{\gamma}|\bar{X}_{s}^{r}(x)|^{\theta}}^{\infty} \mathcal{D}_{n}(\bar{X}_{s}^{r}(x), z\bar{H}_{s}(x, y))\pi(dz)$$

$$\leq Cn^{-1} |\bar{X}_{s}^{r}(x)|^{2\beta-1} h(y-\xi_{s}^{r}-x)^{2} \int_{0}^{n^{\gamma} |\bar{X}_{s}^{r}(x)|^{\theta}} z^{2} \pi (dz) + C |\bar{U}_{s}^{r}(x)|^{\beta} h(y-\xi_{s}^{r}-x)) \int_{n^{\gamma} |\bar{X}_{s}^{r}(x)|^{\theta}}^{\infty} z \pi (dz)$$

$$= C \Big[n^{(2-\alpha)\gamma-1} |\bar{X}_{s}^{r}(x)|^{2\beta-1+(2-\alpha)\theta} h(y-\xi_{s}^{r}-x) + n^{(1-\alpha)\gamma} |\bar{X}_{s}^{r}(x)|^{\beta+(1-\alpha)\theta} h(y-\xi_{s}^{r}-x)^{2} \Big],$$

which tends to zero as $n \to \infty$ if $0 < \gamma < 1/(2 - \alpha)$ and β is chosen so that

- Since $|\phi'_n| \le 1$, $|\mathcal{D}_n(y,z)| = |\phi_n(y+z) \phi_n(z) z\phi'_n(y)| \le 2|z|$.
- For y(y+z) > 0, we have $\mathcal{D}_n(y,z) \le 2n^{-1}z^2/|y|$. • Then for $\theta < > 0$ $(\pi(dz) = cz^{-1-\alpha}dz)$

$$\int_{0}^{\infty} \mathcal{D}_{n}(\bar{X}_{s}^{r}(x), z\bar{H}_{s}^{r}(x, y))\pi(dz)$$

$$= \int_{0}^{n^{\gamma}|\bar{X}_{s}^{r}(x)|^{\theta}} \mathcal{D}_{n}(\bar{X}_{s}^{r}(x), z\bar{H}_{s}^{r}(x, y))\pi(dz) + \int_{n^{\gamma}|\bar{X}_{s}^{r}(x)|^{\theta}}^{\infty} \mathcal{D}_{n}(\bar{X}_{s}^{r}(x), z\bar{H}_{s}(x, y))\pi(dz)$$

$$\leq Cn^{-1}|\bar{X}_{s}^{r}(x)|^{2\beta-1}h(y-\xi_{s}^{r}-x)^{2} \int_{0}^{n^{\gamma}|\bar{X}_{s}^{r}(x)|^{\theta}} z^{2}\pi(dz)$$

$$\leq Ch ||X_s(x)|| + h(y - \xi_s - x) \int_0^\infty z \pi(dz)$$
$$+ C|\bar{U}_s^r(x)|^\beta h(y - \xi_s^r - x)) \int_{n^\gamma |\bar{X}_s^r(x)|^\theta}^\infty z \pi(dz)$$

$$= C \Big[n^{(2-\alpha)\gamma-1} |\bar{X}_{s}^{r}(x)|^{2\beta-1+(2-\alpha)\theta} h(y-\xi_{s}^{r}-x) + n^{(1-\alpha)\gamma} |\bar{X}_{s}^{r}(x)|^{\beta+(1-\alpha)\theta} h(y-\xi_{s}^{r}-x)^{2} \Big],$$

which tends to zero as $n \to \infty$ if $0 < \gamma < 1/(2 - \alpha)$ and β is chosen so that

- Since $|\phi'_n| \le 1$, $|\mathcal{D}_n(y,z)| = |\phi_n(y+z) \phi_n(z) z\phi'_n(y)| \le 2|z|$.
- For y(y + z) > 0, we have $\mathcal{D}_n(y, z) \le 2n^{-1}z^2/|y|$.
- Then for $\theta, \gamma > 0$, $(\pi(dz) = cz^{-1-\alpha}dz)$, $\int_0^\infty \mathcal{D}_n(\bar{X}_s^r(x), z\bar{H}_s^r(x, y))\pi(dz)$ $= \int_0^{n^\gamma |\bar{X}_s^r(x)|^{\theta}} \mathcal{D}_n(\bar{X}_s^r(x), z\bar{H}_s^r(x, y))\pi(dz) + \int_{n^\gamma |\bar{X}_s^r(x)|^{\theta}}^\infty \mathcal{D}_n(\bar{X}_s^r(x), z\bar{H}_s(x, y))\pi(dz)$

$$\leq Cn^{-1} |\bar{X}_{s}^{r}(x)|^{2\beta-1} h(y-\xi_{s}^{r}-x)^{2} \int_{0}^{n^{\gamma} |\bar{X}_{s}^{r}(x)|^{\theta}} z^{2} \pi (dz) + C |\bar{U}_{s}^{r}(x)|^{\beta} h(y-\xi_{s}^{r}-x)) \int_{n^{\gamma} |\bar{X}_{s}^{r}(x)|^{\theta}}^{\infty} z \pi (dz)$$

$$= C \Big[n^{(2-\alpha)\gamma-1} |\bar{X}_{s}^{r}(x)|^{2\beta-1+(2-\alpha)\theta} h(y-\xi_{s}^{r}-x) + n^{(1-\alpha)\gamma} |\bar{X}_{s}^{r}(x)|^{\beta+(1-\alpha)\theta} h(y-\xi_{s}^{r}-x)^{2} \Big],$$

which tends to zero as $n \to \infty$ if $0 < \gamma < 1/(2 - \alpha)$ and β is chosen so that

- Since $|\phi'_n| \le 1$, $|\mathcal{D}_n(y,z)| = |\phi_n(y+z) \phi_n(z) z\phi'_n(y)| \le 2|z|$.
- For y(y + z) > 0, we have $\mathcal{D}_n(y, z) \le 2n^{-1}z^2/|y|$.
- Then for $\theta, \gamma > 0$, $(\pi(dz) = cz^{-1-\alpha}dz)$, $\int_0^\infty \mathcal{D}_n(\bar{X}_s^r(x), z\bar{H}_s^r(x, y))\pi(dz)$ $= \int_0^{n^\gamma |\bar{X}_s^r(x)|^{\theta}} \mathcal{D}_n(\bar{X}_s^r(x), z\bar{H}_s^r(x, y))\pi(dz) + \int_{n^\gamma |\bar{X}_s^r(x)|^{\theta}}^\infty \mathcal{D}_n(\bar{X}_s^r(x), z\bar{H}_s(x, y))\pi(dz)$

$$\leq Cn^{-1} |\bar{X}_{s}^{r}(x)|^{2\beta-1} h(y-\xi_{s}^{r}-x)^{2} \int_{0}^{n^{\gamma} |\bar{X}_{s}^{r}(x)|^{\theta}} z^{2} \pi (dz) + C |\bar{U}_{s}^{r}(x)|^{\beta} h(y-\xi_{s}^{r}-x)) \int_{n^{\gamma} |\bar{X}_{s}^{r}(x)|^{\theta}}^{\infty} z \pi (dz)$$

$$= C \Big[n^{(2-\alpha)\gamma-1} |\bar{X}_{s}^{r}(x)|^{2\beta-1+(2-\alpha)\theta} h(y-\xi_{s}^{r}-x) + n^{(1-\alpha)\gamma} |\bar{X}_{s}^{r}(x)|^{\beta+(1-\alpha)\theta} h(y-\xi_{s}^{r}-x)^{2} \Big],$$

which tends to zero as $n \to \infty$ if $0 < \gamma < 1/(2 - \alpha)$ and β is chosen so that

- Since $|\phi'_n| \le 1$, $|\mathcal{D}_n(y,z)| = |\phi_n(y+z) \phi_n(z) z\phi'_n(y)| \le 2|z|$.
- For y(y + z) > 0, we have $\mathcal{D}_n(y, z) \le 2n^{-1}z^2/|y|$.
- Then for $\theta, \gamma > 0$, $(\pi(dz) = cz^{-1-\alpha}dz)$, $\int_0^\infty \mathcal{D}_n(\bar{X}_s^r(x), z\bar{H}_s^r(x, y))\pi(dz)$ $\int_0^{n^\gamma |\bar{X}_s^r(x)|^{\theta}} \mathcal{D}_n(\bar{z}r(z), z\bar{z}r(z)) = \int_0^\infty (\bar{z}r(z), z\bar{z}r(z), z\bar{z}r(z)) dz$

$$= \int_0 \mathcal{D}_n(\bar{X}_s^r(x), z\bar{H}_s^r(x, y))\pi(dz) + \int_{n^\gamma |\bar{X}_s^r(x)|^\theta} \mathcal{D}_n(\bar{X}_s^r(x), z\bar{H}_s(x, y))\pi(dz)$$

$$\leq Cn^{-1} |\bar{X}_{s}^{r}(x)|^{2\beta-1} h(y-\xi_{s}^{r}-x)^{2} \int_{0}^{n^{\gamma} |\bar{X}_{s}^{r}(x)|^{\theta}} z^{2} \pi(dz) + C |\bar{U}_{s}^{r}(x)|^{\beta} h(y-\xi_{s}^{r}-x)) \int_{n^{\gamma} |\bar{X}_{s}^{r}(x)|^{\theta}}^{\infty} z \pi(dz)$$

$$= C \Big[n^{(2-\alpha)\gamma-1} |\bar{X}_{s}^{r}(x)|^{2\beta-1+(2-\alpha)\theta} h(y-\xi_{s}^{r}-x) + n^{(1-\alpha)\gamma} |\bar{X}_{s}^{r}(x)|^{\beta+(1-\alpha)\theta} h(y-\xi_{s}^{r}-x)^{2} \Big],$$

which tends to zero as $n \to \infty$ if $0 < \gamma < 1/(2 - \alpha)$ and β is chosen so that

- Since $|\phi'_n| \le 1$, $|\mathcal{D}_n(y,z)| = |\phi_n(y+z) \phi_n(z) z\phi'_n(y)| \le 2|z|$.
- For y(y + z) > 0, we have $\mathcal{D}_n(y, z) \le 2n^{-1}z^2/|y|$.
- Then for $\theta, \gamma > 0$, $(\pi(dz) = cz^{-1-\alpha}dz)$, $\int_0^\infty \mathcal{D}_n(\bar{X}_s^r(x), z\bar{H}_s^r(x, y))\pi(dz)$ $= \int_0^{n^\gamma |\bar{X}_s^r(x)|^{\theta}} \mathcal{D}_n(\bar{X}_s^r(x), z\bar{H}_s^r(x, y))\pi(dz) + \int_{n^\gamma |\bar{X}_s^r(x)|^{\theta}}^\infty \mathcal{D}_n(\bar{X}_s^r(x), z\bar{H}_s(x, y))\pi(dz)$

$$\leq Cn^{-1} |\bar{X}_{s}^{r}(x)|^{2\beta-1} h(y-\xi_{s}^{r}-x)^{2} \int_{0}^{n^{\gamma} |\bar{X}_{s}^{r}(x)|^{\theta}} z^{2} \pi (dz) + C |\bar{U}_{s}^{r}(x)|^{\beta} h(y-\xi_{s}^{r}-x)) \int_{n^{\gamma} |\bar{X}_{s}^{r}(x)|^{\theta}}^{\infty} z \pi (dz)$$

$$= C \Big[n^{(2-\alpha)\gamma-1} |\bar{X}_{s}^{r}(x)|^{2\beta-1+(2-\alpha)\theta} h(y-\xi_{s}^{r}-x) + n^{(1-\alpha)\gamma} |\bar{X}_{s}^{r}(x)|^{\beta+(1-\alpha)\theta} h(y-\xi_{s}^{r}-x)^{2} \Big],$$

which tends to zero as $n \to \infty$ if $0 < \gamma < 1/(2 - \alpha)$ and θ is chosen so that $\alpha \in \Omega$

$0\leq 2\beta-1+(2-\alpha)\theta<\alpha, \ 0\leq \beta+(1-\alpha)\theta<\alpha.$

The above inequalities are equivalent to

$$\frac{1-2\beta}{2-\alpha} \le \theta \le \frac{\beta}{\alpha-1} \land \frac{\alpha+1-2\beta}{2-\alpha},$$

which holds as long as $\beta \ge 1 - 1/\alpha$. • Letting $n \to \infty$,

$$\mathbf{E}\Big\{|X_{T-t}(\xi_t^r + x) - Y_{T-t}(\xi_t^r + x)|\Big\} = 0.$$

Taking r = t, we get $\mathbb{E}\{|X_{T-t}(x) - Y_{T-t}(x)|\} = 0$, which implies

$$\mathbf{P}\Big\{\int_{\mathbb{R}}|X_t(x)-Y_t(x)|dx=0 \text{ for all } t\geq 0\Big\}=1.$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

$$0 \leq 2\beta - 1 + (2 - \alpha)\theta < \alpha, \ \ 0 \leq \beta + (1 - \alpha)\theta < \alpha.$$

The above inequalities are equivalent to

$$\frac{1-2\beta}{2-\alpha} \le \theta \le \frac{\beta}{\alpha-1} \land \frac{\alpha+1-2\beta}{2-\alpha},$$

which holds as long as $\beta \ge 1 - 1/\alpha$. • Letting $n \to \infty$,

$$\mathbf{E}\Big\{|X_{T-t}(\xi_t^r + x) - Y_{T-t}(\xi_t^r + x)|\Big\} = 0.$$

Taking r = t, we get $\mathbb{E}\{|X_{T-t}(x) - Y_{T-t}(x)|\} = 0$, which implies

$$\mathbf{P}\Big\{\int_{\mathbb{R}}|X_t(x)-Y_t(x)|dx=0 \text{ for all } t\geq 0\Big\}=1.$$

◆□▶★舂▶★酒▶★酒▶ ●

$$0 \leq 2\beta - 1 + (2 - \alpha)\theta < \alpha, \ \ 0 \leq \beta + (1 - \alpha)\theta < \alpha.$$

The above inequalities are equivalent to

$$\frac{1-2\beta}{2-\alpha} \le \theta \le \frac{\beta}{\alpha-1} \land \frac{\alpha+1-2\beta}{2-\alpha},$$

which holds as long as $\beta \ge 1 - 1/\alpha$.

• Letting $n \to \infty$,

$$\mathbb{E}\Big\{|X_{T-t}(\xi_t^r + x) - Y_{T-t}(\xi_t^r + x)|\Big\} = 0.$$

Taking r = t, we get $\mathbb{E}\{|X_{T-t}(x) - Y_{T-t}(x)|\} = 0$, which implies

$$\mathbf{P}\Big\{\int_{\mathbb{R}}|X_t(x)-Y_t(x)|dx=0 \text{ for all } t\geq 0\Big\}=1.$$

 $0 \leq 2\beta - 1 + (2 - \alpha)\theta < \alpha, \ \ 0 \leq \beta + (1 - \alpha)\theta < \alpha.$

The above inequalities are equivalent to

$$\frac{1-2\beta}{2-\alpha} \le \theta \le \frac{\beta}{\alpha-1} \land \frac{\alpha+1-2\beta}{2-\alpha},$$

which holds as long as $\beta \ge 1 - 1/\alpha$.

• Letting $n \to \infty$,

$$\mathbf{E}\Big\{|X_{T-t}(\xi_t^r+x)-Y_{T-t}(\xi_t^r+x)|\Big\}=0.$$

Taking r = t, we get $\mathbf{E}\{|X_{T-t}(x) - Y_{T-t}(x)|\} = 0$, which implies

$$\mathbf{P}\Big\{\int_{\mathbb{R}}|X_t(x)-Y_t(x)|dx=0 \text{ for all } t\geq 0\Big\}=1.$$

 $0 \leq 2\beta - 1 + (2 - \alpha)\theta < \alpha, \ \ 0 \leq \beta + (1 - \alpha)\theta < \alpha.$

The above inequalities are equivalent to

$$\frac{1-2\beta}{2-\alpha} \le \theta \le \frac{\beta}{\alpha-1} \land \frac{\alpha+1-2\beta}{2-\alpha},$$

which holds as long as $\beta \ge 1 - 1/\alpha$.

• Letting $n \to \infty$,

$$\mathbf{E}\Big\{|X_{T-t}(\xi_t^r + x) - Y_{T-t}(\xi_t^r + x)|\Big\} = 0.$$

Taking r = t, we get $\mathbf{E}\{|X_{T-t}(x) - Y_{T-t}(x)|\} = 0$, which implies

$$\mathbf{P}\Big\{\int_{\mathbb{R}}|X_t(x)-Y_t(x)|dx=0 \text{ for all } t\geq 0\Big\}=1.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$0 \leq 2\beta - 1 + (2 - \alpha)\theta < \alpha, \ \ 0 \leq \beta + (1 - \alpha)\theta < \alpha.$$

The above inequalities are equivalent to

$$\frac{1-2\beta}{2-\alpha} \le \theta \le \frac{\beta}{\alpha-1} \land \frac{\alpha+1-2\beta}{2-\alpha},$$

which holds as long as $\beta \ge 1 - 1/\alpha$.

• Letting $n \to \infty$,

$$\mathbf{E}\Big\{|X_{T-t}(\xi_t^r+x)-Y_{T-t}(\xi_t^r+x)|\Big\}=0.$$

Taking r = t, we get $\mathbf{E}\{|X_{T-t}(x) - Y_{T-t}(x)|\} = 0$, which implies

$$\mathbf{P}\Big\{\int_{\mathbb{R}}|X_t(x)-Y_t(x)|dx=0 \text{ for all } t\geq 0\Big\}=1.$$

Theorem

Suppose that (C1): $G(0) \ge 0, H(0) = 0$, and the function $x \mapsto H(x)$ is nondecreasing. (C2):

$$G(x) - G(y)| \le C|x - y|,$$

$$H(x) - H(y)| \le C|x - y|^{\beta}$$

for some constant $1 - 1/\alpha \le \beta < 1$. Then for the following SPDE, Theorems 1 and 2 also hold:

$$\frac{\partial X_t(x)}{\partial t} = \frac{1}{2} \Delta X_t(x) + G(X_t(x)) + H(X_{t-}(x))\dot{\tilde{L}}_t(x), \qquad t > 0, \ x \in \mathbb{R}^d.$$

ヘロト 人間 とくほとくほとう

• Let
$$h(x) = p_{\gamma}(x) := \frac{1}{\sqrt{2\pi\gamma}} e^{-x^2/(2\gamma)}$$
.

Could we get PU to SPDE driven by stable white noise as $\gamma \rightarrow 0$?

<ロ> (四) (四) (三) (三) (三)

Thanks!

E-mail: xuyang@mail.bnu.edu.cn